Minimum area of reinforcement vs maximum area of reinforcement
Beams may be designed to be larger than required for strength consideration owing to aesthetics or other reasons. As such, the corresponding steel ratio is very low and the moment capacity of pure concrete section based on the modulus of rupture is higher than its ultimate moment of resistance. As a result, reinforcement yields first and extremely wide cracks will be formed. A minimum area of reinforcement is specified to avoid the formation of wide cracks. On the other hand, a maximum area of reinforcement is specified to enable the placing and compaction of fresh concrete to take place easily.
Mild steel vs high yield steel in water-retaining structures
In designing water-retaining structures, movement joints can be installed in parallel with steel reinforcement. To control the movement of concrete due to seasonal variation of temperature, hydration temperature drop and shrinkage etc. two principal methods in design are used: to design closely spaced steel reinforcement to shorten the spacing of cracks, thereby reducing the crack width of cracks; or to introduce movement joints to allow a portion of movement to occur in the joints.
For the choice of steel reinforcement in water-retaining structures, mild steel and high yield steel can both be adopted as reinforcement. With the limitation of crack width, the stresses in reinforcement in service condition are normally below that of normal reinforced concrete structures and hence the use of mild steel reinforcement in water-retaining structure will suffice. Moreover, the use of mild steel restricts the development of maximum steel stresses so as to reduce tensile strains and cracks in concrete.
However, the critical steel ratio of high yield steel is much smaller than that of mild steel because the critical steel ratio is inversely proportional to the yield strength of steel. Therefore, the use of high yield steel has the potential advantage of using smaller amount of steel reinforcement.
On the other hand, though the cost of high yield steel is slightly higher than that of mild steel, the little cost difference is offset by the better bond performance and higher strength associated with high yield steel.
Mechanism of plastic settlement in fresh concrete
Within a few hours after the placing of fresh concrete, plastic concrete may experience cracking owing to the occurrence of plastic shrinkage and plastic settlement. The cause of plastic settlement is related to bleeding of fresh concrete. Bleeding refers to the migration of water to the top of concrete and the movement of solid particles to the bottom of fresh concrete. The expulsion of water during bleeding results in the reduction of the volume of fresh concrete. This induces a downward movement of wet concrete. If such movement is hindered by the presence of obstacles like steel reinforcement, cracks will be formed.
No fines concrete
In some occasions no fines concrete is used in houses because of its good thermal insulation properties. Basically no fines concrete consists of coarse aggregates and cement without any fine aggregates. It is essential that no fines concrete should be designed with a certain amount of voids to enhance thermal insulation. The size of these voids should be large enough to avoid the movement of moisture in the concrete section by capillary action. It is common for no fines concrete to be used as external walls in houses because rains falling on the surface of external walls can only penetrate a short horizontal distance and then falls to the bottom of the walls. The use of no fines concrete guarantees good thermal insulation of the house.
Over vibration of fresh concrete
For proper compaction of concrete by immersion vibrators, the vibrating part of the vibrators should be completely inserted into the concrete. The action of compaction is enhanced by providing a sufficient head of concrete above the vibrating part of the vibrators. This serves to push down and subject the fresh concrete to confinement within the zone of vibrating action. Over-vibration should normally be avoided during the compaction of concrete. If the concrete mix is designed with low workability, over-vibration simply consumes extra power of the vibration, resulting in the wastage of energy. For most of concrete mixes, over-vibration creates the problem of segregation in which the denser aggregates settle to the bottom while the lighter cement paste tends to move
upwards . If the concrete structure is cast by successive lifts of concrete pour, the upper weaker layer (or laitance) caused by segregation forms the potential plane of weakness leading to possible failure of the concrete structure during operation. If concrete is placed in a single lift for road works, the resistance to abrasion is poor for the laitance surface of the carriageway. This becomes a critical problem to concrete carriageway where its surface is constantly subject to tearing and traction forces exerted by vehicular traffic.
No comments:
Post a Comment